



# Atmende Netzwerke zur Auslastung von Transporten





## **Atmendes Netzwerk zur Auslastung von Transporten**

- 1. Die wesentlichen Kostentreiber in logistischen Netzwerken
- 2. Was bedeutet "Atmende Netzwerke"?
- 3. Die wesentlichen Erfolgsfaktoren von 'Best-in-Class' Netzwerken
- 4. Ein 'Fitness-Check' fürs Netzwerk leicht gemacht



## 1. Die wesentlichen Kostentreiber in logistischen Netzwerken

## Auswirkungen der Qualität des Netzwerkes auf Kostentreiber

|    | Kostentreiber                            | Auswirkung  |
|----|------------------------------------------|-------------|
| 1. | Personal                                 | Mittelbar   |
| 2. | Fahrzeug und Technik                     | Keine       |
| 3. | Strecke / Stopps                         | Unmittelbar |
| 4. | Wartezeiten                              | Mittelbar   |
| 5. | Yield:                                   |             |
|    | Laderaumnutzung                          | Unmittelbar |
|    | • Leerfahrten                            | Unmittelbar |
|    | Leergutmanagement                        | Unmittelbar |
| 6. | An- und Abfahrzeiten zum Entsorgungsziel | Unmittelbar |

Das logistische Netzwerk hat großen Einfluss auf die meisten Kostentreiber!!!



## **Atmendes Netzwerk zur Auslastung von Transporten**

- 1. Die wesentlichen Kostentreiber in logistischen Netzwerken
- 2. Was bedeutet "Atmende Netzwerke"?
- 3. Die wesentlichen Erfolgsfaktoren von 'Best-in-Class' Netzwerken
- 4. Ein 'Fitness-Check' fürs Netzwerk leicht gemacht



2. Was bedeutet "Atmende Netzwerke"?

## Definition eines ,atmenden' Netzwerkes

## Ziel des Netzwerks: Hohe Effizienz bei volatiler Auslastung

Auf- und Abbau von Destinationen: Richtige Anzahl/Standorte von Lagern und Cross Docking Plattformen

Optimaler Stoppfaktor

#### **Kontrolle durch KPI**

Stoppfaktor Km/Stopp Laderaumnutzung

Personalkosten/Tour

Vorwärts- und Rückwärtslogistik aus einer Hand

Berücksichtigung regionaler Besonderheiten und Anpassung der Gebietsgrenzen

Ein atmendes Netzwerk besteht aus untereinander abhängigen Bestandteilen die optimal harmonieren



## **Atmendes Netzwerk zur Auslastung von Transporten**

- 1. Die wesentlichen Kostentreiber in logistischen Netzwerken
- 2. Was bedeutet "Atmende Netzwerke"?
- 3. Die wesentlichen Erfolgsfaktoren von 'Best-in-Class' Netzwerken
- 4. Ein 'Fitness-Check' fürs Netzwerk leicht gemacht



3. Die wesentlichen Erfolgsfaktoren von 'Best-in-Class' Netzwerken

## Erfolgsfaktoren eines Best-in-Class-Netzwerkes

#### 1. Netzwerkintensität

Hohe Frequenz auf allen Linien

## 2. Optimiertes Hub-System

• Fahrplanmäßige Vernetzung und schnelle Umschlagszeiten

#### 3. Netzwerkeffizienz

• Kostenführerschaft bei Cross-Docking und auch Verwaltung

#### 4. Netzwerkeffektivität

Linienverkehre mit hoher Auslastung

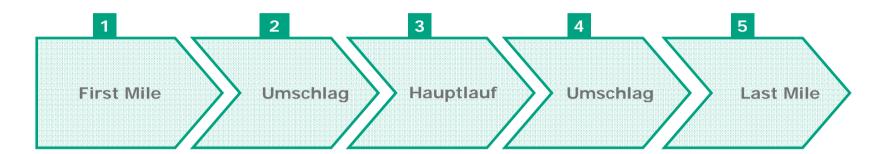
#### 5. Qualitätsführerschaft

• Laufzeiten, Verfolgung und Auslieferqualität

## 6. Netzwerkausdehnung

• Integration der Belieferungsregionen




## **Atmendes Netzwerk zur Auslastung von Transporten**

- 1. Die wesentlichen Kostentreiber in logistischen Netzwerken
- 2. Was bedeutet "Atmende Netzwerke"?
- 3. Die wesentlichen Erfolgsfaktoren von 'Best-in-Class' Netzwerken
- 4. Ein 'Fitness-Check' fürs Netzwerk leicht gemacht

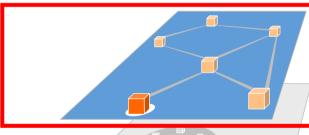




## 1. Erfassung des IST-Netzwerks z.B.



## **Ergebnisse**


- Darstellung des gesamten Netzes
- Abgrenzung/Optimierung einzelner Distributionsgebiete
- Routenoptimierung mit Milk-Run-Optionen
- Rahmentourenplanung
- Kapazitätsnutzung





## 2. Einsatz von Software gestützter Netzwerkoptimierung

- Schnelle Bewertung des Netzwerks und Aufzeigen von Alternativen
- Detailplanung im Netzwerk mittels hierarchischen Systemaufbaus



#### 1. Ebene: Standortübergreifendes Netzwerk

Gesamt-Netzwerk: Betrachtung sämtlicher Standorte und ihrer Transportbeziehungen (First Mile, Hauptlauf und Last Mile), Möglichkeit zur Mehrstufigkeit



#### 2. Ebene: Standortinterne Netzwerke

Prozesse innerhalb der Standorte (Eingang, Ausgang, Umschlag, Sortierung)

#### 3. Ebene: Detailplanung

Flächenplanung in Standorten, Bottom-up-Prozesskostenrechnung auf Basis von Handlingsvorgängen



Hauptnutzen beim Einsatz Software gestützter Netzwerkoptimierung Kosten- und Leistungsoptimierung

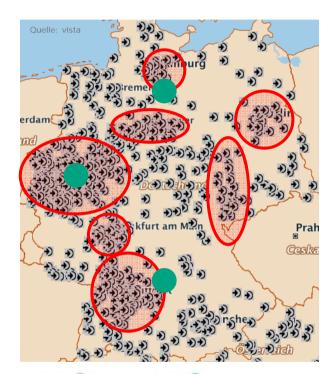
Quelle: vista

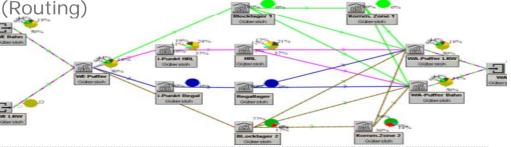


## 3. Auswahl von Optimierungskriterien

#### **Standort**

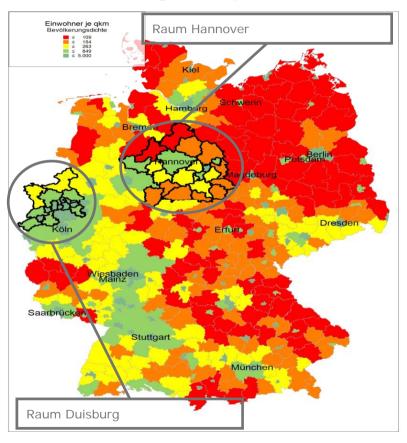
- ✓ Lage und Anzahl (Lager und/oder Cross Dock)
- ✓ Verlegung und/oder Schließung


## **Bildung von Gebietsgruppen (Clustern)**


- ✓ Kunden und/oder Lieferanten
- ✓ Distributions-/Entsorgungsgebiete
- ✓ Schwerpunkt-Festlegung

## Netzwerkoptimierung

✓ Kostengünstigster und/oder schnellster Wege/Routen im Netzwerk (Routing)


- ✓ Transportfrequenzen
- ✓ Stoppfaktor

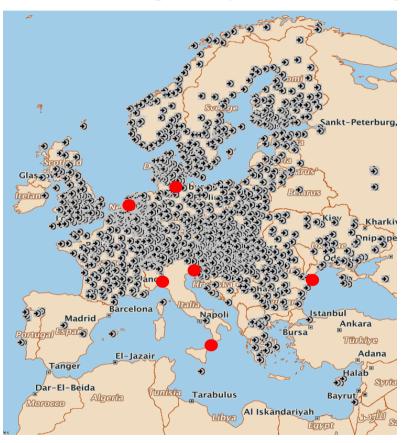






## 4. Umsetzungsbeispiele: Distributionsentscheidung "Make or Buy"



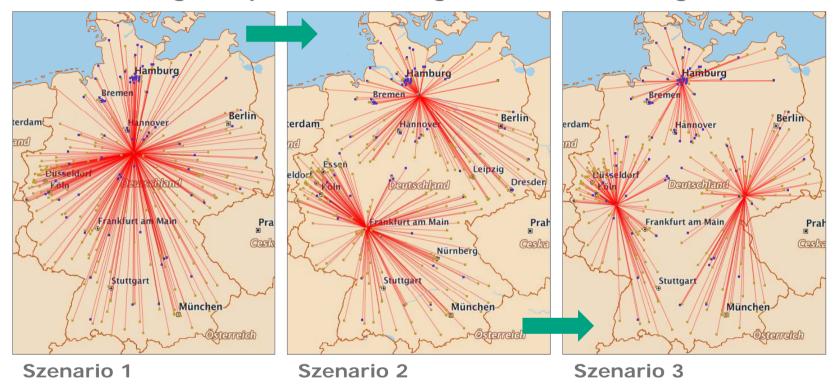

- Analyse von
   Auslieferungsgebieten nach
   Filialstandorten
- Fokus/Aufbau einer eigenen Distribution für Ballungsräume/Filialcluster
- Weniger dicht besiedelte Gebiete haben eine tendenziell niedrigere Stoppdichte und damit höhere Stoppkosten
- Vergabe von Aufträgen in weniger dicht besiedelten Netzwerken an Dienstleister



Eine heterogene Struktur des Auslieferungsgebiets erfordert regionalspezifische Maßnahmen



## 4. Umsetzungsbeispiele: Gateway-, Lager und Distributionsanalyse




- 1. Bewertung der Gateways anhand eines Scoring-Modells
- 2. Ermittlung der Vorlaufkosten
- 3. Simulation des Netzwerks ab dem Gateway
- 4. Berechnung der optimalen Anzahl/Standorte an Lagern/ Cross Docking-Plattformen
- Ableiten von Handlungsempfehlungen aus der Kombination von Vor-Haupt- und Nachlauf

Bei der Berechnung des optimalen Netzwerks werden alle Logistik-Kosten von Fernost bis zur Kundenfiliale berücksichtigt



## 4. Umsetzungsbeispiele: Aufteilung nach Distributionsgebieten





Optimale Aufteilung von Distributionsgebieten unter Berücksichtigung der Standort- und Transportkosten



## 4. Umsetzungsbeispiele: Milkrun Optimierung



- Identifizierung von Stopp-Clustern
- Festlegung eines Ver-/Entsorgungsgebietes
- Ermittlung der optimalen Touren innerhalb des Gebietes
- √ Höhere Auslastung der Touren
- ✓ Geringere Km/Tour
- ✓ Höhere Stopp-Dichte
- ✓ Niedrigere Kosten je Tour



Die Rahmentourplanung determiniert die Tagesdisposition



## Zusammenfassung

Bewerten Sie den Stellenwert des Netzwerks Ihres Unternehmens und optimieren Sie es nach dem Leitfaden:

- Structure follows Strategy
- Rahmentouren vor Tourenplanung
- ▶ KPI zur Sensitivitätsanalyse
- Kontinuierliche Fitness Checks



Das Netzwerk ist eine wesentliche Stellschraube zur Einsparung von Kosten



Eine systemgestützte Netzwerkoptimierung kann: Von der Globalen Ebene bis zur Prozess Ebene am Standort durchgeführt werden!!!



Ein ,Fitness Check' offenbart Zeit-, Kosten-, Markt- und Entwicklungspotenziale





## Standortoptimierung

- + Tourenoptimierung
- + Frachtraumoptimierung

Kosten- und CO2 Einsparung